Звезды, как и люди, не бессмертны. Жизнь их конечна, но заканчивается она
По официальной космологической теории, Солнце взорваться не может. Ни сейчас, ни в будущем. Весу оно немного недобрало, на наше счастье. Еще процентов сорок от сегодняшней массы — и критический барьер был бы преодолен. Но, как говорится, «
Однако на одном Солнце свет клином не сошелся. В нашей Галактике еще есть чему взрываться. И если подобный взрыв произойдет
Но и это еще не все. Спустя примерно три десятилетия после того, как альфа Центавра погаснет, до Солнечной системы доберется выброшенное ею облако пыли и газа. Это облако будет настолько плотным, что Солнце в нашем небе поблекнет, яркость его упадет вдвое и на планете наступит новый ледниковый период.
К счастью, альфа Центавра тоже недотягивает до сверхновой. По массе она примерно равна Солнцу. Более реальный кандидат на эту должность — удаленный от нас на 8 световых лет Сириус. Он в два раза тяжелее нашего светила. Но и о нем беспокоиться особо не приходится.
В 160 световых годах от Земли, в созвездии Пегаса, сидит ближайший к нам красный гигант по имени Шеат. Его диаметр примерно в 110 раз больше солнечного. Век таких звезд недолог и составляет всего несколько сотен миллионов лет (для сравнения напомним, что динозавры вымерли всего 60 млн. лет назад, а до этого они царили на планете почти 200 млн. лет). Но и Шеат — почти игрушка, если сравнить эту звезду с обитающим в созвездии Кита на расстоянии 230 световых лет от Земли красным
Если посмотреть еще дальше, то можно найти и более массивные звезды. На расстоянии примерно 500 световых лет таких уже три. Рас Альгете из созвездия Геркулеса перекрывает диаметр Солнца в 500 раз, Антарес из Скорпиона — в 640, а Бетельгейзе из Ориона — в 750. Диаметр последней приближается к диаметру орбиты Сатурна. Шар по размерам чуть меньший, чем вся наша Солнечная система, и готовый взорваться в любую минуту.
Канадские ученые Дейл Рассел и Тэкер Уоллес объясняют вымирание динозавров резким повышением радиации при взрыве близко к Земле сверхновой звезды. По их словам, взрыв повлек за собой резкое похолодание, а ультрафиолетовое и рентгеновское излучения в течение всего нескольких дней могли увеличиться в сотни раз. Взрыв Бетельгейзе повлечет за собой гораздо более значительные последствия. На нашем небе она на несколько месяцев превратится во вторую луну, причем луну полную и светящую как днем, так и ночью. Про мощность радиационного удара и говорить не хочется. Одно утешение: пыль от Бетельгейзе будет добираться до нас не одну тысячу лет. Так что если человечество сможет пережить саму вспышку, то к нашествию космического мусора оно успеет подготовиться.
А взрыв этот, если верить Брэду Картеру, должен произойти буквально со дня на день. Бетельгейзе, в отличие от многих других
Есть, правда, еще версия, что Бетельгейзе уже «рванула», причем по человеческим меркам давно — несколько столетий назад. И как раз сейчас ударная волна сверхжесткого излучения от нее летит к нам. Ведь лету ей — чуть больше четырехсот лет.
Николай Чугай, доктор
— Николай Николаевич, известно, что 60 млн. лет назад наших динозавров убила вспышка взорвавшейся недалеко от Земли сверхновой. Может ли
— Ваш вопрос состоит из двух частей. Первая часть — утверждение о том, что вспышка сверхновой убила динозавров, — не вполне обоснована. Для того, чтобы это произошло, должно было случиться крайне маловероятное событие: вспышка сверхновой на расстоянии несколько парсек. С другой стороны, полностью исключить такую возможность нельзя. В настоящее время более реалистичной кажется гипотеза, согласно которой массовое вымирание динозавров связано с резким похолоданием вслед за падением крупного метеорита. Что касается вопроса о том, произойдет ли вспышка близкой сверхновой в будущем, — кто знает? Возможно,
— Есть ли сейчас близкие к нам звезды, взрыва которых астрономы ждут со дня на день?
— Самая близкая звезда — Солнце, но оно не
— Наше солнышко — типичная звезда?
— Да, подавляющее большинство звезд похоже на Солнце, и их ждет такой же финал. Что же касается взрывов сверхновых, то они в основном порождаются массивными звездами массой более 10 солнечных масс.
Таких звезд рождается гораздо меньше — раз в 20, чем звезд солнечного типа. Их век относительно «недолог» — от нескольких миллионов до ста миллионов лет. По внешним признакам довольно трудно оценить возраст такой звезды. Наиболее надежный признак скорого конца — превращение горячей массивной звезды в холодную звезду большого радиуса. Такие звезды называют красными сверхгигантами. Когда мы видим массивный красный сверхгигант, мы знаем: скоро, через миллион лет или менее того, он взорвется, как сверхновая звезда. С большей точностью предсказать момент «кончины» нельзя.
— Даже с точностью в несколько тысяч лет?
— Нет. Ближайший к нам красный сверхгигант — Бетельгейзе, самая яркая звезда в созвездии Ориона.
Ее масса — 10–20 солнечных. Это потенциальная сверхновая, и часто говорят, что она
Впрочем, в будущем, когда, возможно, будут созданы нейтринные телескопы очень высокой
— А как, собственно, взрывается звезда? Что служит взрывчаткой?
— Взрывы сверхновых могут быть двух видов: термоядерный взрыв
— Ядро — железное?
— Да, и вот почему. Ядро атома железа имеет замечательное свойство: его энергия связи в расчете на один нуклон, то есть протон или нейтрон, максимальна среди всех ядер. Образно говоря, железо — это пепел термоядерного горения на предшествующей стадии. В некоторый критический момент давление в центре звезды уже не в силах сдерживать увеличивающийся вес ядра, равновесие между давлением и гравитацией нарушается в пользу гравитации, и ядро стремительно обрушивается на центр, образуя при этом нейтронную звезду с радиусом 15 км. В данном случае говорят: случился гравитационный коллапс. Выделившаяся при коллапсе огромная гравитационная энергия срывает оболочку звезды ударной волной. И вот она — вспышка сверхновой.
— А возможно ли, что Бетельгейзе уже рванула, только мы пока этого не увидели
— Нет, в астрономии принято говорить о наблюдаемых событиях, которые происходят одновременно с приходом фотонов.
— То есть как увидели, так и произошло. И все же она может взорваться, и она довольно близкая.
— Да, совсем недалеко — на расстоянии 130 парсек, то есть около 400 световых лет.
— И как может ее взрыв сказаться на нас?
— Я думаю, никак. В видимом свете сверхновая будет светить примерно как четверть Луны. Что же касается жесткого излучения в ультрафиолетовом и рентгеновском диапазоне, то его поток будет ничтожно мал по сравнению с жестким излучением
— И как скоро эта оболочка долетит до Земли?
— Могла бы приблизительно через 100 тысяч лет. Но этого не случится. Оболочка, порожденная взрывом Бетельгейзе, не достигнет Земли.
— Почему?
— При расширении в межзвездной среде — которая хотя и почти вакуум, но все же не пустое пространство — оболочка сверхновой тормозится. Расчеты показывают, что, расширившись до радиуса 50–100 парсек, она полностью затормозится и «рассыплется» на газовые облака, потеряв свою идентичность. Даже если оболочка на последнем издыхании и накроет Землю, никто этого заметит: фон космических лучей возрастет не более чем на 10%.
— Раз так, нам не стоит бояться Бетельгейзе. А равно с ней — и Миру из созвездия Кита, про которую тоже говорят, что рвануть может.
— Ну, Миру точно опасаться нечего. Это звезда солнечного типа, и она находится на пути к белому карлику. Сейчас это пульсирующий красный гигант, которому осталось жить около миллиона лет. Взорвется скорее другой сверхгигант — Мю Цефея, Эракис, «гранатовая звезда Гершеля». Она такого же класса, как и Бетельгейзе, однако теряет массу намного энергичнее и, скорее всего, ближе к своей кончине, нежели Бетельгейзе. Но она в четыре раза дальше Бетельгейзе. Обе эти звезды взорвутся, как сверхновые типа II, которые как раз и порождаются гравитационным коллапсом, о котором мы уже упоминали.
— С Солнцем мы можем быть абсолютно спокойны, поскольку, как вы сказали, оно никогда не взорвется.
— Нет. Но неприятностей от него следует ждать, правда, только лишь через 5 млрд лет. Оно раздуется, превратится в красный гигант, а в его
— Станет жарко?
— Очень жарко, около тысячи градусов.
— Да, пусть лучше так. А вы сами наблюдали взрывы сверхновых? Лично, воочию?
— Я их изучаю, используя наблюдения других астрофизиков, в том числе в ходе выполнения совместных исследований. С другой стороны, одну из недавних сверхновых, сверхновую 1987 года в Большом Магеллановом Облаке в Южном полушарии, можно было видеть невооруженным глазом. В максимуме она светила, как третья по яркости звезда в созвездии Малая Медведица. Собственно, ее открыли, посмотрев на небо.
— Полыхнула — и разглядели. А не полыхнула, никто бы и не знал.
— Не совсем так. Большое Магелланово Облако — карликовая галактика на расстоянии 50 килопарсек — довольно интенсивно наблюдается астрономами, и сверхновую не могли бы пропустить. Впрочем, так оно и было, поскольку она была открыта независимо несколькими астрономами. Прежде в разное время видели гораздо более яркие сверхновые, которые взрывались в нашей Галактике. Японцы и китайцы наблюдали сверхновую 1054 года, арабы и европейцы видели и описали сверхновую 1006 года. Тихо Браге подробно описал сверхновую 1572 года, а Кеплер — сверхновую 1604 года.
— А там, где они это все видели, там сейчас что?
— О, там впечатляющие свидетельства катастрофы. Например, на месте сверхновой 1054 года находится расширяющаяся ажурная волокнистая Крабовидная туманность, в центре которой находится пульсар — вращающаяся нейтронная звезда. На месте сверхновой Тихо Браге, 1572 года, мы видим оболочку, которая расширяется со скоростью около 3000 км/с. В ее центре нет пульсара, поскольку это был взрыв белого карлика с полным разлетом всей звезды. Оболочка сверхновой Тихо не столь впечатляющая в оптическом диапазоне, как Крабовидная туманность, зато хорошо видна в рентгеновском и радиодиапазонах. Более того, в рентгеновском диапазоне удается разглядеть то, что не увидеть в видимом свете, — интересную структуру, порождаемую при торможении сверхновой в межзвездном газе. В этом случае возникают две ударные волны. Внешняя бежит наружу по межзвездному газу, а внутренняя — по веществу сверхновой. Обе ударные нагревают газ до температуры в десятки миллионов градусов, и обе светят в рентгеновском диапазоне. Но свечение внутренней ударной волны оказывается во много раз сильнее по той причине, что вещество сверхновой обогащено металлами, в частности железом и кремнием, которые хорошо излучают рентгеновские кванты. Это обстоятельство подчеркивает тот известный факт, что сверхновые звезды являются источником тяжелых химических элементов, то есть элементов тяжелее водорода и гелия, во Вселенной. В ударной волне происходит и ускорение частиц — протонов и электронов — до очень высоких энергий. Ускоренные электроны при торможении в магнитном поле излучают радиоволны. Именно это радиоизлучение — признак того, что в ударной волне происходит ускорение космических лучей. Определенно можно сказать, что космические лучи, попадающие на Землю, — результат коллективного вклада взрывов сверхновых в нашей Галактике.